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Project Talia -AI for improved mental health

Multidisciplinary Research collaboration
• Expertise in Machine Learning
• Expertise in Digital Mental Health

Leverage SilverCloud’s user base
2018-ongoing



Background

Digital Mental Health Interventions (DMHI) 
have great potential for dissemination of 
evidence-based mental health care

166 individual studies on DMHI included in the 
review

Effective and cost-effective for depression and 
anxiety through multiple studies



Background

1Time spent, loginsRaw Counts

Specific modules & contentContent 2

Tools used & active usageActivity 3

Temporality and orderTime 4

DMHIs have been largely treated as a black box



Background
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• High-level granularity
• RCT data (n= 216 participants)
• More usage is associated to better outcomes



Background

• Aim: Identify behavior patterns based on how 
people engage with a DMHI program for 
depression and anxiety

• De-identified dataset (54,604 users) 

• Supported by clinicians

• Naturalistic setting (14 weeks of usage)

• Deep level of granularity

• Include all analytic events
• Unsupervised deep learning models



Background

• class 1 (low engagers), 
• class 2 (late engagers), 
• class 3 (high engagers with rapid disengagement), 
• class 4 (high engagers with moderate decrease)
• class 5 (highest engagers)

• Differences in the quantity and type of content seen
• Diverse and complex patterns difficult actionable 

steps

• 5 classes of engagement patterns



Background

• Aim: Understand how different support strategies 
correlate with clinical outcomes. 

• Study: 234,735 supporter messages to clients

• ML methods to: 

(i) clustering supporters based on client 
outcomes; 
(ii) extracting and analyzing linguistic features 
from supporter messages; 
(iii) identifying context-specific patterns of 
support



Background

Findings

• Concrete, positive and supportive feedback from supporters 
are strongly associated with better outcomes

• Identifying Effective Context-Specific Support Strategies

• supporter messages that typically achieve higher client outcomes 
contain more words that are positive, supportive, related to social 
behaviors, and less abstract;

• tend to be shorter than less successful messages

• Difficulty to infer causality or the direction of the 
associations



Machine Learning for Outcome Prediction

State-of-the-art deep learning model to predict Reliable Improvement
in symptoms of depression (PHQ-9) and anxiety (GAD-7)

Treatment outcome



Machine Learning for Outcome Prediction

Data split 70:20:10 (training, validation, testing)
3-layer RNNs with a 50-dimensional hidden layer with LSTM units to encode client features at different treatment time points



Figure 3: RNN model performance by review period against baselines for (a) PHQ-9, (b) 

GAD-7 outcome prediction, with bootstrapped confidence intervals.  Prediction accuracy >87% for PHQ-9 and GAD-7 after three measures

PHQ-9: Predictive Accuracy GAD-7: Predictive Accuracy

Machine Learning for Outcome Prediction



Considerations for Real-World ML Application

Specific use scenario + work practices of iCBT coaches
Challenges for integration within routine clinical care



Considerations for Real-World ML Application

Design mock-ups 
illustrating various 
prediction output ideas 
for user research



Considerations for Real-World ML Application



A Considerations for Real-World ML Application

Key concerns about prediction data 

• Risk of over-reliance: Uncritical acceptance + trust in 
data insights ‘as is’ 

• Risk of negligence of interpersonal side: treating 
clients ‘as a number’

Responsible use of algorithms within healthcare

• Balancing data insights with clinical expertise
• Careful communications of use + purpose of 

ML within the interface
• Importance of staff training 



Research to test outcome prediction model
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• Interviewed 6 coaches on 3 separate occasions on use of the 
prediction tool as an enhanced feature of the platform

• High level of trust on accuracy (87% from 3 weeks)
• Positive predictions reaffirmed support 
• Negative predictions led to more time spent on review to help 

get user on track
• More likely to help novice coaches, experienced have routine 

/ harder to adapt

Background work: 

• Validation of model 
accuracy

• Pilot in US site with a 
sample of coaches

• Feedback from 
coaches, clinical team 
to design final 
version 
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Key concepts of the study:

• Feedback-informed psychotherapy (FIT) 

• Deliberate practice

• Performance of the model

Using a deep 

learning probability model to 

deliver feedback-informed, 

internet-delivered 

psychotherapy for depression 

and anxiety: A randomised-

controlled trial within routine 

clinical practice
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Methods:

• All coaches from a single health provider in UK, randomized into 
two groups, and split into novice and experienced coaches

• Questionnaires at baseline, 4, 12 weeks

• Usefulness, ease of use, attitude, intention to use

• Deliberate practice

• Other questions on the experience of using tool

RCT on DLM to 
deliver FIT for 
depression and 
anxiety 
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Primary objectives:

• Is there a greater percentage of reliable improvement in the 

clients of coaches using the prediction tool [i.e. pre-post 

changes in PHQ-9 and GAD-7 scores]?

• Do coaches find the prediction tool acceptable? 

Secondary objectives:

• Are coaches engaging in higher levels of deliberate practice as a 

result of the prediction tool?

RCT on DLM to 
deliver FIT for 
depression and 
anxiety 
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Training considerations for coaches prior to trial kick-off:

• Model description and interpretation

• Prediction scenarios

• Addressing concerns on human vs computer aspect 

• Ethical responsibilities

RCT on DLM to 
deliver FIT for 
depression and 
anxiety 
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• Validation of Microsoft/SilverCloud collaboration and process

• First trial of its kind, creating FIT model for use and evidence-
base generation in research

• Service level: better outcomes

• Coach level: more informed clinical decisions, prioritization 

• Client level: treatment that is more tailored to their individual 
needs

• Leveraging ML to employ FIT and enhance digital health delivery 
and effectiveness

Impact of the RCT

Clinical contributions

Scientific contributions



Key takeaways

• Complexity behind the questions the model is trying to answer

• What are the meaningful data features?

• Trade-offs: what is the ML model giving back that is clinically useful and impactful?

• Insights generated on continual basis, from all sides (dev, product, coaches, users, etc)

• Continuing to validate long-term



What’s Next

• Digital Health Science into the future

• SilverCloud Research into Amwell



SilverCloud: James Bligh, Gavin Doherty, Dessie Keegan, 
Maryann Hanratty, Maria Lyons, Catalina Cumpanasoiu, 
Caroline Earley, Daniel Duffy 

Microsoft: Danielle Belgrave, Niranjani Prasad, Tim 
Regan, Usman Munir, Isabel Chien, Ryutaro Tanno, 
Hannah Murfet, Junaid Bajwa, Aditya Nori

Thank you to all 
those who 
contributed to this 
work!



Thank you


